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In this paper we discuss the possibility that concentric vortex rings, with associated 
circulation of opposite sign, can propagate steadily as a coherent pair. Inviscid flow 
considerations suggest that such a configuration, which we define as a vortex ring pair, 
may be possible. Numerical solutions of the Navier-Stokes equations for in- 
compressible, laminar flow show that, although diffusion results in a continual 
redistribution of vorticity, a quasi-steadily propagating vortex ring pair could be 
attained in practice. Experiments are reported to test this idea by generating counter- 
rotating vortex ring pairs by impulsive fluid motion through an annular orifice. 
Depending on the normalized impulse and the orifice radius ratio, the vortex rings are 
observed either (i) to propagate together until diffusive effects or vortex ring instability 
destroys the coherent motion, or (ii) the inner ring propagates to some maximum axial 
distance where it reverses its direction and returns to the orifice wall, leaving the outer 
ring free to continue its forward motion unabated. Numerical simulation shows that 
the stable flow of the vortex ring trajectories can be reasonably well reproduced. The 
boundary separating motion (i) from (ii) and the normalized inner ring penetration 
distance are found over the range of impulse and radius ratio covered by the 
experiments. Other observed features of vortex ring motion including self-similar 
trajectories of the spiral core centres during vortex sheet roll-up and ring instability are 
also presented. 

1. Introduction 
The dynamics of vortex rings have long held a fascination for fluid dynamicists, as 

the recent authoritative review article by Shariff & Leonard (1992) demonstrates, and 
indeed were of great concern to those nineteenth century giants, Kelvin and Helmholtz. 
An interesting historical perspective of their work is given by Acheson (1990). Both 
Kelvin and Helmholtz illustrated the fact that two like vortex rings, in tandem with a 
common axis of symmetry, will tend to proceed in a leapfrogging manner through one 
another. A modern illustration of this is provided by Yamada & Matsui (1978); see also 
Van Dyke (1982). This leapfrogging motion is readily explained qualitatively in terms 
of the self-induced motion of each ring, and the mutual interaction between them. Both 
effects result in a propulsive motion of the rings in the same axial direction, whilst the 
second effect also accounts for variations in the ring radii. The fluid motion is a highly 
unsteady one. 

In the present paper we also investigate the axisymmetric flow properties of 
interacting vortex rings. However, unlike the situation described above, we assumed 
that the circulation associated with each of our rings differs in sign. The particular 
question we address is whether or not two such rings, with different radii and placed 
concentrically, can result in a steady flow in the form of a propagating vortex ring pair. 



3 12 P. D.  Weidman and N .  Riley 

Qualitative arguments suggest that this might be possible as follows. The mutual 
interaction between the rings acts to push them in the same direction, which is the 
direction in which the outer ring would be self-propelled in the absence of the inner. 
By contrast the self-induced velocity of the inner ring is in the opposite direction; 
indeed, if it were sufficiently strong one might suppose that it would separate from the 
outer ring and propagate in the opposite direction. On the other hand, if the inner 
ring’s self-induced velocity were sufficiently weak then it would be pushed through and 
ahead of the outer ring by their mutual interaction. This in turn suggests that a delicate 
balance may exist between the two rings such that they propagate together as a 
coherent vortex ring pair. It can be readily be shown for an inviscid fluid, if we make 
the approximations that the rings are thin and the vorticity within them is uniform, 
that the concept of a vortex ring pair propagating steadily is a valid one. That such a 
steady, or even quasi-steady, flow is possible in a viscous fluid is not at all obvious 
owing to the continuous redistribution of vorticity by diffusion. In this paper we 
investigate such a possibility by numerical simulation and laboratory experimentation. 

We note that coaxial counter-rotating vortex rings appear naturally in rather 
different fluid dynamic situations. The formation of a secondary counter-rotating 
vortex ring is often observed during the head-on collision of a primary vortex ring with 
a plane wall or a free liquid surface (Magarvey & MacLatchey 1964; Yamada & 
Matsui 1982; Cerra & Smith 1983) and has recently attracted much attention from the 
computational fluid dynamics community (Orlandi 1990; Dommermuth & Yue 1990 ; 
Swearingen, Crouch & Handler 1993). In this event a shear region of sign opposite that 
of the incident ring develops between the ring and the wall, and the vortical fluid rolls 
up to form a secondary vortex ring. This weaker vortex ring is then induced to 
propagate around and inside the primary ring, where circumferential corrugations 
develop, each of which grow in amplitude and wraps in tongue-like fashion around the 
primary vortex ring. Lasheras, Lecuona & Rodriguez (1991) report similar features in 
the moving frame of a co-flowing jet. With large-amplitude axial forcing, a ring 
structure composed of an array of counter-rotating vortex-ring pairs with the outer, 
weaker ring surrounding the inner primary ring has been observed. Amplification of an 
azimuthal instability on the inner ring deforms the outer ring to such an extent that 
circumferential corrugations on the latter pinch off and reconnect to form an array of 
vortex loops spaced uniformly around the inner ring. These complicated, but 
interesting, induced vortex motions occur only when the counter-rotating vortex rings 
stay in close proximity over a sufficient length of time. In the former situation the wall 
traps the rings while in the latter event coherence of the ring pairs is a direct result of 
the periodic axial forcing. The primary structure in each case is the vortex ring pair, 
and the experiments described above show that such a ring pair can be highly unstable. 

Nevertheless, numerical simulations presented here at sufficiently low Reynolds 
number show that a balance may be struck between ring-ring induced motions and 
vortex diffusion such that the ring pair persists without instability for an appreciable 
period of time. In the present experiments, an apparatus has been designed to generate 
laminar counter-rotating vortex rings by impulsive motion of liquid (water) through an 
annular orifice. Kambe & Takao (1971), in an investigation of the motion of distorted 
vortex rings, reported a single experiment of this type in air using an annular orifice 
which we interpret (see the Appendix) to have an orifice radius of 0.6. After formation 
of the coaxial rings by impulsive piston displacement, they observed the immediate 
return of the inner ring and its collision with the orifice wall. 

Our paper is organized as follows. In $2 we describe the numerical approach we have 
adopted for the laminar axisymmetric flows under consideration. This consists of a 
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standard alternating-direction implicit method employed in a time-marching solution 
of the unsteady Navier-Stokes equations. These numerical results are discussed in 93 ; 
principal amongst these is the discovery that quasi-steadily propagating vortex ring 
pairs are a viable proposition, before diffusion brings about their ultimate decay. 
Details of the experimental facility capable of producing counter-rotating vortex rings 
over a range of piston-generated impulse motions through five separate annular orifices 
are given in 94. Also described in 94 are the measurement techniques used to determine 
fluid impulse, piston program factor, and vortex ring trajectories. Features of ring pair 
formation, flow asymmetries, ring instabilities and inner ring penetration distance are 
presented in 9 5 and, when possible, compared with analogous results for single vortex 
rings generated through circular tubes. Comparisons of the viscous numerical 
simulations with measured trajectories are presented in 96. A discussion of results and 
concluding remarks are given in $7. 

2. Governing equations and solution method 
Helmholtz’s equation for the vorticity m’ may be written as 

(2.1) 
amp 
_.- v x (u’ x 0’) = VV2O’, 
at’ 

where v is the kinematic viscosity, u’ is the velocity, t’ time and 

o ‘ = V x v ‘ ,  V . v ’ = O .  ( 2 . 2 4  b)  

We are concerned with the dynamics of pairs of axisymmetric vortex rings in a circular 
cylindrical container of radius a and length 1. We work with cylindrical polar 
coordinates (r’, 8, z’), such that the containing cylinder is defined by r’ = a, z’ = 0,l; the 
corresponding velocity components are (u’, o’, w’). If yo is the initial circulation about 
the outer vortex ring of the pair, then physical variables are made dimensionless with 
the length a, time a2/yo, velocity yo/a and vorticity yo/a2. We assume both that the flow 
is axisymmetric and that there is no azimuthal flow, so that u = (u, 0, w )  and 
o = (0, Q 0) where 5 = au/az-aw/ar.  Equation (2.2b) is satisfied by the introduction 
of a stream function $ such that 

We choose to work not with the vorticity component 5 but with a vorticity function 
defined as 

The &components of each of (2 .  l), (2.2~2) then give, respectively, 

( 2 . 5 ~ )  

~ 2 $  = -r, (2.5b) 

where D2 = a2/ar2 - r-’ a / &  + a2/az2, and Re = yo/v  is the Reynolds number. Our 

11 FLM 251 
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computational domain is defined as 0 < r < 1,0 < z < zo, where zo = l /a ,  for which we 
require boundary conditions as follows : 

( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

aw 
ar @ = u = - = r = O ,  r = O ,  O < Z G Z , ,  

aw $ = u = w = O ;  r=-, r = l ,  O<Z<Z, ,  ar 

The conditions (2.6) hold for all time t. For an initial distribution of vorticity, at 
t = to say, we approximate the vorticity associated with each ring by a viscous line 
vortex (Lamb 1932), which will be justified when the dimensions of the cross-section 
of a ring are small compared with its radius of curvature. Thus, with the outer and 
inner rings located at (ro,zo), ( r6 , z i )  respectively, at initial time t = to we have 

r Re 
r 4nt0 
- - - --[..PI- Re[(r - r0)' + (z - z,J2]/4t0} +B exp { - Re[(r - ri)' + ( z  - ~~)~] /4 t , i ] ,  

Yo 
(2.7) 

where yi is the initial circulation about the inner ring. 
Equations (2.5), together with boundary conditions (2.6) and initial condition (2.7), 

are solved using finite-difference methods. We work with a uniform grid in the (r ,z)-  
plane of dimensions m x n, so that the grid spacings Sr, Sz are defined as Sr = (m - l)-', 
Sz = zo(n- l)-l, and the values of I) and r at each grid point, namely I)i,j and 
1 < i < m, 1 < j  < n, are determined for each t > to. Since ( 2 . 5 ~ )  is parabolic we can 
march the vorticity function forward in t ,  with steps of size St ,  whilst ensuring that the 
elliptic equation (2.5 b) and the boundary conditions (2.6) are satisfied throughout. To 
initiate the calculation initial conditions at t = to are required on this mesh. Values of 

are provided by (2.7), from which we may deduce values of @ i , j  by direct 
integration of (2.5 b) in the manner indicated below. 

In both of equations (2.5) all spatial derivatives are represented, in the finite- 
difference formulation, by central differences. And with values for Ti,r given, the 
discretized equation (2.5 b) is solved iteratively by line relaxation. We solve the finite- 
difference approximation to (2.5 a) using an alternating-direction implicit (ADI) 
method. Let the solution for at time t be rf,j; we then wish to obtain the solution 
at the interior grid points at time t+ St, namely rf,;l, 2 < i < m - 1,2 < j < n - I .  We 
assume, at this juncture, that @ and all boundary values are known at both t and t + St. 
The AD1 method then involves splitting the time step into two equal half-steps and 
advancing the vorticity function over each half-step in turn, so that an intermediate 
solution, rt:i, at t++St is obtained. Over the first half-step, from t to t++St, r- 
derivatives of r are evaluated at time t++St, using central differences, whilst z- 
derivatives are evaluated at time t .  This results in a tridiagonal system of algebraic 
equations, which are solved in the usual way by forward and back substitution, from 
which is determined. Over the second half-step, from t + :St to t + St, r-derivatives 
of r are evaluated at time t+;St, with z-derivatives evaluated at time t + S t .  A 
tridiagonal system again results, from which G,$l is determined. Throughout the two 
half-time steps described above all other quantities are evaluated at t + ;St. When 
advancing (2.5 a) one time step from time t we assume that $:,:l and, when the no-slip 
boundary condition is enforced, the boundary values c,;', 2 < j < n- 1 ,  c,:', c,:, 
2 < i < m - 1 are known at time t + St. Since this is not immediately true the following 
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procedure is pursued. First, estimates of these quantities are made by extrapolating 
from the two previous time steps. Using these estimates and the complete solution at 
time t ,  namely I&, rF,j, (2.5a) is solved as described above to obtain a first estimate 
of TF,:l, Solution of (2.5b) and evaluation of the wall vorticity, in the manner described 
below, gives revised estimates of $:,;', P;!, Tf,;', and r?:. These new values can then 
be used to advance, again, the solution for Tfrom time t and a better estimate of $:,:', 
Tzl is thus obtained. This iteration within a time step continues until successive 
iterates differ by an amount which is less than a tolerance set for the calculation. To 
complete this discussion of our numerical procedures, the vorticity function at the solid 
boundaries must be calculated to ensure that the no-slip condition is satisfied there. 
Following Woods' (1954) method we have 

The procedures we have outlined above ensure the formal accuracy of our solution to 
O(Sr2, 6 2 ,  at')). 

We describe in $3 results obtained by the method set out above. In all the examples 
considered we choose Re = 2000, a value typical of our experiments as described in $ 5 ,  
and take to = 0.05. The initial values ro and ri also encompass the range of our 
experimental values. For all results presented here we have set Sr = 6z = 0.005 and 
6t = 0.001. Numerical experimentation shows these values to be adequate for 
our purposes. 

3. Numerical results 
One of the aims of the present investigation is to examine the validity of the concept 

of a vortex ring pair. This we have defined, in 0 1, as a pair of concentric vortex rings, 
with associated circulation of opposite sign, which propagate as a coherent unit. 
Evidence in favour of the concept is provided by a simple calculation based upon an 
inviscid model with thin vortex rings that have cores of uniform vorticity. Figure 1 
depicts two vortex rings having equal circular cross-sections of radius a, with outer and 
inner radii of the rings, measured to the section centre, r ,  and ri respectively, a notation 
consistent with that in (2.7). For this situation Weidman (unpublished) has shown that 
a vortex ring pair is established for 

where yo, yi again represent the circulation about each of the outer and inner rings, 
respectively, 6 = r i / r ,  is the radius ratio of the ring system, and the modulus of the 
complete elliptic integrals 4 ( k )  and El@) is k = 2&/(1 +a). The result (3.1) assumes 
that the spacing of the rings is small compared with their mean radius, and that the core 
dimensions are small compared with the spacing. For a viscous fluid the situation is not 

11-2 
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FIGURE 1. Schematic diagram of a vortex ring pair with equal core radii u. 
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r 
FIGURE 2.  Vortex core trajectories: ro = 0.34, rd = 0.29 ( A  = 0.05, S = 0.853), yJy0 = -0.97, 

Re = 2000. The markers indicate the core positions at successive times 0.05, 0.1, 0.15, 0.2, 0.3. 

so clear cut. Diffusion results in a continuous redistribution of vorticity and ultimately, 
of course, the vortex rings will decay. At best, therefore, only a quasi-steady situation 
can be envisaged. The experiments described in $ 5  often result in a separation of the 
two vortex rings, and in our simulations we consider such situations also. 

We begin by showing, in figure 2, a situation that is quite typical of the observations 
we have made in our experiments. In this diagram the trajectories of the cores of the 
vortex rings at a particular azimuthal section are plotted. The core has been defined to 
be the point within the cross-section of each vortex ring at which the vorticity takes its 
extreme value. This is located for each ring by interpolation. To interpret figure 2 we 
must relate it to the two competing influences under which the vortex rings move. 
There is, first, the mutual interaction between the two rings. As for a rectilinear vortex 
pair there is a tendency for each to convect the other along, instantaneously in a 
direction perpendicular to the line joining them. In addition, a curved vortex will 
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FIGURE 3. The penetration depth z ,  of the inner vortex core as a function of the circulation ratio 

y,/y, for various values of A = ro-r i  = r, (1 -8). Re = 2000, ro = 0.34. 
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FIGURE 4. The critical value that yields a vortex ring pair, as a function of 8 = rJr,,. The full 
line corresponds to the viscous calculations with Re = 2000, ro = 0.34; the broken line is the result 
(3.1) with ro = 0.34, = 0.02. 

induce a velocity upon itself. For our vortex rings this second influence, given that they 
have vorticity of opposite sign, tends to pull them apart. It is only a subtle balance 
between these two effects that can result in the establishment of a vortex ring pair. That 
balance is reflected in (3.1) for thin inviscid vortex rings. For the case shown in figure 
2 separation takes place at t w 0.2. Up to that time the rings have been steadily 
diminishing in radius. This is a consequence of the mutual interaction between them, 
for as soon as the inner ring slips behind the outer, owing to the self-induced velocity 
effect, the velocity at each core has a radially inward component. Once separation of 
the rings has occurred the mutual interaction effect becomes negligible and the two 
rings propagate in opposite directions, each largely uninfluenced by the presence of the 
other. 
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The distance to which the inner ring will penetrate, z p  say, before separation takes 
place, will clearly depend upon the two parameters y i /yo  and 6 = r i / r0 ,  or A = ri - ro. 
In figure 3 we show, for various values of A,  the penetration depth z p  as a function of 
yi/yo. The critical value ( y $ / ~ ~ ) ~  for which a vortex ring pair, as we have conceived it, 
is established is not difficult to identify even though our computational domain extends 
only to z = z,, = 1, close to which we can expect wall interference effects. We believe, 
and we discuss a particular example below, that it is possible to recognize such a pair, 
even in what is at best a quasi-steady situation for a viscous fluid. The values of y i / yo  
so determined provided the results for z = zp  = 1 in figure 3. The very steep slopes of 
the curves depicted in figure 3 as zP+ 1 help to confirm the values of (yi/yo)c in the 
sense that for z p  2 0.9, approximately, only very small changes in yi/yo are required 
to bring about enormous changes in zp .  We see clearly from figure 3 that as A ,  the 
initial distance between the rings, increases then a given penetration depth is achieved 
by reducing the value of - yi /yo,  as might be expected. Conversely, if we fix y i /yo,  then 
as the initial distance between the two rings increases the penetration depth decreases. 
Again this is a forseeable trend, since as that distance increases the self-induced motion 
of each ring becomes increasingly dominant when compared with the mutual 
interaction between them. 

In figure 4 we show the values of (yi/y,JC as a function of 6. Also included is the result 
(3.1) for inviscid vortex ring pairs, within its range of validity, for which we have 
chosen the remaining parameter a = 0.020. We recall that our viscous calculations are 
for a Reynolds number Re = 2000. On account of the limitations of the available 
computing resources it has not been possible to provide results for ( y i / y J C ,  as shown 
in figure 4, for a range of values of Re. However, sample calculations show that for a 
given value of ( y i / yJC  the effect of increasing Re is to increase 6, that is to decrease the 
initial distance A between the rings. In the experiments to be described 6 may be fixed. 
Although a degree of control could be exercised over Re, even though it was not 
possible to predetermine this, no control could be exercised over yt/yo. In many cases 
\y,/y,l proved to be too large, and a separation of the rings, of the type shown in figure 
2, took place. Nevertheless, situations have been observed which correspond to the 
formation of a vortex ring pair, although rapid diffusion of vorticity and/or ring 
instability does quickly lead to the mutual destruction of the constituent vortex rings. 

Finally, in figure 5 we demonstrate the features, noted in our simulation, associated 
with an example of a vortex ring pair. In figure 5(a) we show the trajectories of the 
vortex cores and, even though we have a quasi-steady rather than steady flow, we see 
that the integrity of the configuration is sensibly maintained until the endwall is 
approached. Although interaction of the vortex rings with the endwall is not our major 
concern in this paper, we do note some interesting features of it. As the wall is 
approached its effect is to decrease the radius of the inner ring and increase that of the 
outer. The mutual interaction between the rings then rapidly diminishes and the inner 
ring, with its self-induced velocity, moves back in its preferred direction. The outer 
ring, meanwhile, drives on causing a separation of the flow from the endwall. This 
manifests itself, as shown, as a ‘bouncing’ of the ring from the wall. In this process, 
which inter a h  we have observed in our experiments, vorticity of opposite sign is swept 
from the wall around and into the vortex ring, with diffusion acting to rapidly destroy 
it. In figure 5(b) we show the time-variation of features of the outer of the two rings 
in the vortex ring pair. This diagram emphasizes the quasi-steadiness of the situation. 
Although there is only a relatively slow variation in radius of both the vortex core and 
its axial velocity, we see that diffusion acts to reduce rapidly the magnitude of the 
vorticity at the core. Figure 5 (c)  compares these quantities with the corresponding 
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FIGURE 5. (a) Vortex core trajectories: ro = 0.34, rr = 0.29 ( A  = 0.05, S = 0.853), y,/y, = -0.89, 
Re = 2000. The markers indicate the core positions at the successive non dimensional times 0.05,0.1, 
0.3, 0.5, 0.7. (b) The variation with time of the outer vortex core position (roe,z,,), and the vorticity 
Q, associated with it, for the example of (a). (c) A comparison, as a function of time, of the outer 
(Y,,, zoc) and inner (rdc, zlc) vortex core positions, and the associated vorticity extrema t,, .om for the 
example of (a). 

quantities associated with the inner ring. Again, the quasi-steady nature of the flow is 
emphasized. Notice, in particular, the very small variation, 1.3 % over the time span 
of the calculation, in the axial position zic/zOc of the constituent ring cores; this, along 
with the results in figure 5(a),  clearly exhibits the persistence of the vortex ring pair 
configuration. 

4. Experimental apparatus and measurement procedure 
A schematic of the experimental apparatus constructed from Plexiglas is given in 

figure 6(a),  with a detailed drawing of the vortex ring pair generator in figure 6(b). The 
impulsive motion of liquid through the annular orifice 0 is provided by the motion of 
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FIGURE 6. Schematic diagrams of (a) the experimental apparatus and (6) the vortex ring pair 
generator. See text for discussion of component parts. 

Disk 4 ( 4  w (cm) A (cm2) Do1 up 6 
1 11.44 3.89 187.23 0.647 0.595 
2 13.95 2.63 137.14 0.884 0.726 
3 15.37 1.92 104.45 1.160 0.800 
4 16.00 1.61 88.98 1.362 0.833 
5 16.66 1.28 72.05 1.682 0.876 

TABLE 1. Annular orifice geometry showing inner disk diameter di, gap width 4 W = ro - ri, orifice area 
A and radius ratio 8, and the velocity ratio between piston speed U p  and orifice fluid velocity U, 

piston P manually actuated by depression of overhead link arm A. The piston chamber 
opens to cavity K which sits on top of wall W, horizontally fixed to four gussets in the 
corners of surrounding box B. The plate forming the outer orifice boundary of 
diameter do is mounted flush with the horizontal wall, and interchangeable circular 
plates attached to central shaft S have inner orifice diameters di. Open cylinder C of 
diameter 2a = 57.5 cm projecting 76.2 cm downward inside box B provides the 
axisymmetric test region boundary and is attached by a ring of bolts to W. The 2 cm 
gap at tank bottom between C and B allows for movement of water displaced 
downward by the piston back up between the sidewalls of C and B through vents in 
W to raise slightly the free surface level. Dimensions, areas and other relevant features 
of the annular orifice and piston chamber are given in table 1. 

The time history of piston movement is measured by a 1 YO precision 5 KSZ linear 
resistor L with associated electrical components to provide an input signal to one 
channel of a Honeywell Model 1706 Visicorder. The variable gain of that channel was 
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set to give full-scale deflection for each piston stroke. Dye from reservoirs R, and R, 
runs through Tygon tubing to ports P, and P, and follows internal holes to opposite 
sides of the outer orifice rim as depicted in figure 6b. Dye from reservoir R, is 
conducted through port P, down the hole through the central shaft S and out radial 
conduits drilled through the centre disk. Since these dye ports are located diametrically 
opposite their companion ports on plate W, the evolution of vortex ring cores in a 
meridional plane of the counter-rotating vortex rings may be followed in space and 
time, but no information about the azimuthal structure can be deduced from this 
information alone. The heights of each reservoir are individually adjusted prior to a 
run with the piston fully depressed so that a very small flow rate through the four dye 
ports is observed, and in this condition the manifold valve regulating the flow is closed. 
The piston is then slowly raised, drawing water up the chamber, and set to a 
predetermined height by brass spacers H. After residual fluid motions cease, the 
manifold valve is reopened and overhead arm A is manually depressed until the piston 
reaches the bottom of its stroke flush with the opening into chamber K. Attempts were 
made to obtain a linear displacement of the piston with time, but this was not precisely 
possible owing to the manual operation of piston movement. The deviation from linear 
piston displacement is measured by the program factor (Glezer 1988) to be introduced 
in $5. 

Photographic tracking of the dye blobs marking the vortex ring core sections was 
obtained with a Pentax ME Super 35 mm camera using Kodak TMZ-3200 black and 
white film. The camera was mounted some 2 m  distant from, and focused on, the 
central plane of dye motion. The depth of field was sufficient to capture the black 
rectangular grid G (with 5 cm x 5 cm resolution) inscribed on the vertical wall opposite 
the camera. Parallax was taken into account by photographing a second grid, 
temporarily aligned with the central plane, and measuring the deviation between the 
two grids. Photographs early in a run were acquired using a battery-operated winder 
at a nominal speed of 2 frames/s, and at later times single-shot photographs were taken 
manually. Camera firings relative to the piston displacement history were recorded by 
an electric signal sent to a second channel of the Visicorder. All IYms were developed 
in-house and the centres of vortex cores were measured relative to the back-wall grid 
pattern G from projections of the negatives onto a large screen. Parallax corrections 
were made to obtain mid-plane trajectory values according to the measured divergence 
angle of the 135mm lens. Estimates of the spatial and temporal resolution of the 
measurements are & 4 mm and k 0.02 s, respectively. 

The test fluid was normal tap water. Adherence of bubbles to the plastic surfaces 
after filling the tank with cold tap water obscured viewing and photography. Even 
more seriously, bubbles attached to the upper surface of horizontal wall W in the 
neighbourhood of the orifice interfered with the vortex sheet roll-up and formation of 
the vortex rings. This problem was overcome by filling the tank with very warm water 
(T  w 40 "C) and allowing the 0.4 m3 volume to cool to room temperature over a 24 
hour period. After wiping all surfaces clean, no subsequent bubble formation was 
observed. Other impediments to axisymmetric ring formation were tank density 
stratification due to the ambient vertical temperature gradient in the laboratory and 
improper alignment of the inner and outer plates forming the orifice. The nearly 1 "C 
temperature variation of water over the height of the tank was substantially reduced 
by circulating the water through the system using an external pump with inlet coming 
from a tube immersed halfway down the tank between B and C and outlet attached to 
port X on the top of chamber K. Much care was taken in levelling the outer annular 
plate with respect to the inner disk. Concentricity of the inner disk was maintained by 
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adjustment of the four adjustable screws mounted at 90" intervals around the baffle 
disk D positioned near mid-height inside chamber K. The baffle also served to disrupt 
the motion of the vortex ring pair which forms at the orifice once the piston motion 
stops. This helped reduce the influence of the upward-propagating vortex ring pair on 
the downward-propagating ring pair. In spite of these precautions, asymmetric (tilting 
mode) motion of the inner vortex ring was observed in many runs. 

The tilting of the inner vortex rings was finally attributed to the elastic bending of 
plastic plate W induced while actuating lever L to produce downward piston motion. 
We have recently learned, however, of new inviscid vortex ring stability calculations 
(Lough 1993) which go a long way toward providing an explanation for the 
observed asymmetric motion in our experiment. Lough's results reveal that vortex 
rings in an unbounded fluid are neutrally stable to tilting-type perturbations, but in the 
presence of another vortex ring, be it either real or an image ring, this neutral stability 
is lost owing to the now preferred orientation of the initial disturbance. Although 
higher modes of instability are also found by Lough, for thin rings the tilting mode is 
the most unstable over the range of radius ratios encountered in our experiments. 

5. Overview of vortex ring pair flow 
Assuming axisymmetric formation, the motion of the counter-rotating vortex rings 

depends on the magnitude of the initial impulse, the time history of the gap-averaged 
velocity through the orifice, the effective piston stroke, and the diameter ratio of the 
orifice 6 = rJr0 = di/do. The fluid velocity Uo(t) through the gap is readily calculated 
from the time history of piston displacement scaled by the ratio of orifice area to 
annular piston area as listed in table 1. Also listed are the orifice areas A ,  widths W, 
and radius ratios S for inner disks 1-5 having diameters di. Quantities that characterize 
Uo(t) determined directly from the strip chart record, are the duration of the impulse 
T,,, the time-averaged orifice velocity U,, the length L of the annular fluid column 
displaced through the orifice, and the program factor p f  (cf. Glezer 1988) defined as 

To 
0 - Ls Uo(t)dt, 

O - T ,  0 

p f = -  I" Uo(t)zdt. 
Toq 0 

(5.3) 

In terms of these quantities the impulse I of liquid forced through the orifice is given 
by 

(5-4) 

The salient non-dimensional parameters governing the motion of the vortex rings are 
taken to be 8, I /2pA,  L/2 W, and Pf, where p is the fluid viscosity. In narrowing the 
independent parameters to four, we have tacitly assumed that the piston time history 
curves for each run are similar; in this investigation all piston displacements were 
nearly linear in time. Actually, the piston histories were composed of generally two, but 
sometimes three or four sectionally continuous linear segments, and deviation from 
nominal uniform piston velocity is measured by the program factor defined above. 
Since the water temperature for each of the experimental runs was in the range 
17.5-21.0 "C, the water density was nearly constant at p = 0.9983+0.0004 g/cm3. The 

I = pAPf Q T,. 



Vortex ring pairs 323 

Disk Run 
1 10 

11 
12 
13 
14 

2 28 
29 
30 
31 
32 
33 
34 

3 4 
5 
6 
7 
8 
9 

4 21 
22 
23 
24 
25 
26 
27 
35 
36 
37 

5 15 
16 
17 
18 
19 
20 

P 

1.066 
1.066 
1.067 
1.064 
1.053 
0.964 
0.966 
0.969 
0.965 
0.966 
0.968 
0.969 
1.022 
1.022 
1.075 
1.070 
1.068 
1.067 
0.978 
0.978 
0.964 
0.962 
0.962 
0.964 
0.966 
0.971 
0.973 
0.976 
0.990 
0.990 
0.989 
0.983 
0.978 
0.978 

(CP x 102) 4 
1.073 
1.086 
1 .O# 
1.051 
1.069 
1.039 
1.053 
1.012 
1.021 
1.177 
1.187 
1.061 
1.075 
1.090 
1.027 
1.076 
1.089 
1.084 
1.128 
1.141 
1.135 
1.077 
1.110 
1.116 
1.096 
1.115 
1.090 
1.090 
1 .ooo 
1.038 
1.044 
1.295 
1.113 
1.163 

0 0  ( W S )  

3.340 
5.228 
2.337 
2.809 
2.633 
3.779 
6.834 
4.030 
2.714 
3.260 
2.875 
4.970 
4.401 
5.575 
2.519 
4.489 
5.302 
3.735 
4.605 
3.968 
2.610 
4.189 
3.539 
2.224 
3.064 
6.952 

11.587 
4.635 
3.780 
5.852 
1.980 
2.730 
4.192 
1.474 

L/2 w 
0.915 
0.928 
0.932 
0.907 
0.847 
1.346 
1.019 
0.685 
1.129 
1.013 
1.092 
0.826 
2.667 
2.741 
2.424 
2.556 
2.413 
2.409 
2.219 
1.789 
1.298 
1.120 
1.568 
1.110 
1.98 1 
1.513 
1.513 
1.513 
1.860 
2.140 
2.130 
2.135 
1.828 
0.499 

ll2PA 
1195 
1920 
824 
976 
878 

1440 
1992 
757 
851 

1056 
1012 
1181 
2370 
3126 
1119 
221 5 
2504 
1755 
1892 
1330 
640 
843 

1027 
458 

1105 
1938 
3151 
1257 
906 

1675 
568 
978 

1112 
55 1 

z;/ W 
0.928 
0.865 
0.975 
0.930 

1.60 
1.57 

2.24 
2.95 
1.57 
2.60 
3.55 
3.18 
4.40 
3.88 
3.74 
3.33 
4.55 

- 

- 

- 

- 

- 

- 

- 

- 
4.78 
4.77 
5.69 
- 

- 

- 
8.47 
- 

- 

$ W . )  
1 .o 
0.2 

-4.3 
-4.8 
- 

-2.4 
- 1.0 

15.8 
6.0 

- 1.6 
-3.4 
- 1.9 
-0.6 
- 1.1 

2.4 
1.6 

-0.7 
2.1 

- 

- 

- 
- 

- 
- 
- 

-4.2 
3.3 

- 3.2 
- 

- 
- 

- 2.3 
- 
- 

Notes 
1 
1 
1 
1 
1, 3 
1 , 4  
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 ,3  
2,3 
2 
1 
1 
1 
1 
2 
1 ,3  
2 
1 ,  5 
2 
2 

TABLE 2. Measured values of viscosity p, program factor 5, average orifice fluid velocity Uo, 
dimensionless piston stroke L/2 W, dimensionless fluid impulse I/2pA, dimensionless inner ring 
penetration distance za/W, and estimated tilt angle $ of the inner vortex ring at maximum 
penetration. Notes: 1, inner ring returned; 2, inner ring did not return; 3, no photographic record; 
4, no synchronized time record for camera firings; 5, inner ring became turbulent near the top of its 
trajectory. 

fluid viscosity, however, varied slightly from run to run, and its value along with other 
pertinent measurements are listed in table 2. The 34 experimental runs in this table are 
categorized according to inner disk number (cf. table 1). 

The parameter space of all reported experiments is plotted in figure 7. Here 
L/(d,  - dJ = L/2Wis the non-dimensional length of fluid displaced through the orifice 
and 1/2pA is the dimensionless impulse. All counter-rotating vortex rings were 
observed to be laminar on formation and, with the exception of run 18, throughout 
their entire trajectories. For a given piston program, Glezer (1988) has shown that 
vortex rings produced through the open end of a circular tube will be laminar or 
turbulent on formation depending on the non-dimensional piston displacement L/d,  
and the Reynolds number yJv ,  or equivalently, the dimensionless impulse 1/2pA. His 
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FIGURE 7. Parameter space for experiments conducted; L is the slug length of fluid displaced 
through the orifice and Z is the total impulse. A, S = 0.595; 0, 6 = 0.726; +, S = 0.800; 0, 
S = 0.833; 0, S = 0.867. 

measured transition boundary separating laminar from turbulent vortex rings on 
formation is plotted in figure 7 for comparison with the present laminar counter- 
rotating vortex ring data. 

Although the primary goal of the experiment was to determine the trajectories of 
laminar counter-rotating vortex rings, other interesting features of ring-pair motion 
soon became apparent. In the following sections we present observations of the vortex 
ring formation process, flow asymmetry, individual vortex ring instability, and 
interacting ring pair instability. 

5.1. Vortex ring formation process 
Careful observations of piston-generated vortex rings through a circular tube have 
been reported by Didden (1979). In his experiment the piston was programmed to 
achieve constant velocity throughout, with the exception of an initial acceleration 
lasting 10% of the period of piston movement. He reported that the evolution to a 
constant-diameter vortex ring downstream of the tube takes place in two stages. In the 
first stage, the vortical fluid rolls up into a toroidal spiral whose major diameter 
increases with downstream distance. For these laminarly produced vortex ring pairs, 
the spiral centre generated at fixed S follows common (self-similar) trajectories 
independent of the orifice Reynolds number, but with forward penetration depending 
on the piston stroke. In the second stage after termination of piston motion, the vortex 
ring propagates freely away from the open end and simultaneously induces the 
formation of a secondary counter-rotating vortex ring with axis in the exit plane of the 
tube. The initial forward trajectory of the free vortex ring is accompanied by a sudden 
decrease in ring diameter owing mainly to the influence of the nozzle wall. In earlier 
work Didden (1977) showed, and Leiss (1978) subsequently confirmed, that the vortex 
trajectory is independent of orifice Reynolds number up to Re, = lo4. 

All of the features reported by Didden (1979) for single vortex ring formation have 
been observed in vortex ring pair formation. Figure 8 shows the averaged near-orifice 
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FIGURE 8. Near-orifice trajectories for runs 21, 22, 23 showing the self-similar nature of vortex ring 
formation. Following Didden (1979) we have plotted the instantaneous ring diameters Do and D, 
normalized by the outer orifice diameter do. The respective dimensionless fluid slug lengths are: 
L / 2  W = 2.22, 0 L / 2  W = 1.79, L / 2  W = 1.30. The respective piston stroke durations are 
respectively q, = 1.55 s, q2 = 1.45 s and q3 = 1.60 s. 

trajectories of vortex rings for runs 21, 22 and 23 which were generated with nearly 
identical program factors p f  = 1.135 f 0.0007, but with decreasing effective piston 
strokes L = 7.14 cm, 5.76 cm, and 4.18 cm, respectively. The corresponding periods of 
piston movement for these runs are &, = 1.55 s, = 1.45 s, and &, = 1.60 s. The 
distances travelled by the inner and outer vortex 'rings during these periods are 
indicated by the arrows in figure 8. Even with the paucity of data in the formation 
region, common trajectories of the developing spiral cores can be discerned. Faired 
curves drawn through the data away from the roll-up trajectories mark the paths of 
free ring motion. At the end of the piston stroke, a secondary vortex ring pair, opposite 
in sense to the primary ring pair, forms at the edge of the annular orifice and 
propagates vertically back up chamber K until it impinges on baffle plate B, spreads 
radially, and dissipates. If one neglects the effect of this secondary ring pair, an analysis 
of the motion of the primary ring pair taking into account its image behind a solid wall 
unequivocally shows that both the inner and outer vortex rings must decrease in 
diameter as they move away from the wall. This in fact is observed for all rings at 
distances z /d ,  > 0.3, but the initial free motion of the ring pair is appreciably affected 
by the presence of the orifice and the secondary ring pair when z/do < 0.3. The effect 
of the secondary ring pair is to draw the primary ring pair back towards the orifice, and 
this results in an initial increase in diameter of the inner ring and a more rapid decrease 
in diameter of the outer ring. The orifice Reynolds numbers for runs 21,22, and 23 are 
Reo = 2Wu,,/v = 1515, 1306 and 869, respectively. 

Very recently, a direct numerical simulation of the inviscid spiral roll-up process in 
Didden's (1979) experiment has been reported by Nitsche (1992). She has accurately 
reproduced the formation, growth and trajectory of the primary vortex ring and also 
the formation and growth of the secondary vortex ring inside the nozzle. The common 
trajectories of spiral vortex ring roll-up is confirmed and the evolution of the spiral into 
an elliptical form at later times is observed both in the inviscid computation and in 
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FIGURE 9. Average outer vortex ring diameter Do normalized by outer orifice diameter do as a 
function of time for run 23. The first three undulation periods of the vortex core are At; = 3.95 s, 
A$ = 5.00 s and At; = 7.5 s. 

Didden’s viscous experiment. In carrying out the computation to larger times, Nitsche 
observed an oscillation of the ring diameter with slightly increasing oscillation period 
At’, which was interpreted as a ‘tumbling’ of the elliptical vortex core. A similar 
oscillation of outer ring diameter is observed in the present experiments. Figure 9 
shows the average trajectory of the outer vortex ring corresponding to run 23. In the 
second stage of motion, three oscillations of increasing period At; > At; > At; 
superimposed on the radially shrinking ring trajectory are discerned. The ratio of the 
first two periods in Nitsche’s simulation is dtt/At; = 1.13 and the ratios observed here 
are dt ; /d t l  = 1.26 and dt,/dt, = 1.50. We do not know if the outer vortex ring core 
was pulsating or rotating. However, this qualitative correspondence between our 
measurements and the calculations of Nitsche (1992), both in the self-similar nature of 
axisymmetric vortex sheet roll-up and in the vortex ring oscillation suggest that the 
vortex dynamics at early times in the present experiment are basically an inviscid 
phenomenon. 

5.2. Vortex ring stability 
Observations of azimuthal instabilities on vortex rings date back at least to Thompson 
& Newall (1885). Krutzsch (1939) found that instability waves may be non-uniformly 
distributed around the ring and that subsequent breakdown on the vortex ring may be 
initiated locally (Saffman 1978). Many experimental and analytical investigations on 
the stability of laminarly formed vortex rings have appeared recently, notably those by 
Maxworthy (1974, 1977)’ Widnall, Bliss & Tsai (1974), Liess & Didden (1976) and 
Saffman (1978). Saffman (1978) used information from the experiments of Liess & 
Didden (1976) to choose various constants for his theory predicting the number N of 
azimuthal waves appearing on a single vortex ring at instability. Good agreement 
between the theory and independent measurements of Maxworthy (1977) for N was 
found up to the highest experimental Reynolds number available for comparison, 
Re, = oo d,/v = 8 x lo4, except in the region 3 x lo4 < Re, < 5 x lo4 where Maxworthy 
observed a ‘bimodal instability’. 
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FIGURE 10. Vortex ring pair trajectory for run 23 at S = 0.833 showing mutual instability leading 
to disintegration of the organized motion. 

Assuming that the orifice Reynolds number Re,, = Uo(do-dd,)/v for our vortex ring 
pair may be used in Saffman’s theory, one finds 2 < N < 7 waves on the outer vortex 
ring for the range of orifice Reynolds numbers 520 < Re, < 3480 covered in the present 
experiments. Dye injection at opposite sides of the annulus can provide some 
information on ring-ring interactions, but reveals nothing about possible azimuthal 
instabilities riding on each individual ring. Complete visualization around the vortex 
rings was made possible by gently injecting dye over the upper surface of the inner and 
outer orifice plates accessed via port X on the top of chamber K (cf. figure 6b). A few 
runs using disk 2 with radius ratio S = 0.726 at Re FZ 1800 revealed four and sometimes 
five waves around the outer vortex ring, with no waves apparent on the inner ring, 
apart from the irrepressible mode-one tilt. At this Reynolds number, the results 
provided in figure 3 of Saffman (1978), strictly valid for a single vortex ring, give 
N = 5, but very close to transition to N = 6. In the visualization, the waves appeared 
uniformly distributed around the outer ring and grew to a fixed (or slowly varying) 
amplitude of about two core diameters. The vortex ring continued to propagate with 
its ‘frozen’ corrugation pattern down to the bottom of the tank where, there being 
sufficient dye remaining for visualization, its collision with the lower boundary could 
be observed. During the collision process the ring rebounded off the bottom wall once, 
and sometimes twice, in a fashion similar to the numerical simulation given in figure 

In experiments using disks 4 and 5 which provide the narrowest gaps tested, the 
vortex ring pairs often travelled forward in close proximity for many gap widths W. 
The motion generally ended in an abrupt ring-ring instability, wherein the inner ring 
wrapped rapidly around the outer, at least in certain azimuthal sections. This process 
is evident in figure 10 which shows the ring pair trajectory for run 23 corresponding to 
6 = 0.833 with dimensionless impulse I/2,uA = 640. A section of the inner ring filament 
is observed to wrap around the stronger outer ring on the left, while on the right the 
ring filaments veered off together. At this point the dye in the vortex cores usually 
diffused to an extent that further identification of the individual rings was not possible. 
The asymmetry in this ring-ring instability exhibits features similar to the ring-ring 
interaction simulated in the numerical experiments of Swearingen et al. (1992) for 
normal incident collision of a vortex ring with a wall as described in the introduction. 
In the six experiments using disk 5 for which 6 = 0.867, the rings propagated together 

5 (4. 
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FIGURE 1 1 .  Vortex ring pair trajectory for run 4 at S = 0.800 showing return of 
the inner vortex ring. 

in the manner described above with the exception of run 23. In that case the spiral coils 
in the core of the inner ring burst into a turbulent patch just before reaching maximum 
penetration. The inner ring then continued its motion with no apparent interruption, 
contracting in diameter over the top of its trajectory, and propagated in a very 
symmetric manner backward to eventually collide with the inner orifice disk. The 
trajectory for this run plotted in figure 17(b) is introduced in $6. 

5.3. Flow symmetry 
By now it is understood from the experiments that the rings comprising a ring pair 
either propagate together until diffusive effects or vortex ring instability destroys the 
coherent motion, or the inner ring advances to some maximum axial position, reverses 
its direction and returns to the orifice wall, leaving the outer ring to continue its 
forward motion unabated. An example of the latter case is provided by run 4 with 
trajectories plotted in figure 11. Note that although both halves of the inner ring 
penetrate equally far from the orifice wall, there is an obvious asymmetry in their 
motion. For example, the inner core on the right moves radially inward to r'/a z 0.08 
while the inner core on the left goes no further than r'/a x 0.1 15. This skewed leftward 
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FIGURE 12. Vortex ring pair trajectory for run 15 at S = 0.867 showing balanced ring pair 
propagation before ultimate decay. 

movement of the inner ring is observed to impart a very slight rightward impulse to the 
outer ring, an evident consequence of conservation of zero total radial momentum for 
the system. As a measure of asymmetry, we have recorded the angle of tilt 4 of the 
inner vortex ring at the top of its trajectory in the plane of visualization. For run 4 the 
angle is 4 = - 1.9", and tilt angles for all other inner rings which reversed their 
direction of motion are given in table 2. Note that the rings have equal probability of 
tilting to the left or right and, with two exceptions in the measured data, 141 < 5". 

Run 15 provides an example of counter-rotating vortex rings that propagate 
together as a coherent unit. The trajectory for this ring pair plotted in figure 12 shows 
the weaker inner ring always lagging slightly behind the stronger outer ring. In this 
position the balance between ring-ring induction and diffusion can be maintained (cf. 
figure 5a). It has been observed in other runs that whenever the inner ring moves 
abreast of the outer ring, the former is induced to move rapidly forward and around 
the latter, and the coherent motion is inevitably destroyed by ring-ring instability. In 
one or two instances, however, it appeared that the weaker inner ring actually merged 
with the outer ring without visible instability. 

5.4. Inner ring penetration 
As mentioned in the introduction, Kambe & Takao (1971) reported, inter alia, 
qualitative results of a single experiment in air designed to initiate counter-rotating 
vortex rings through an annular orifice by impulsive piston motion, much like in the 
present investigation. Three cine frames of a motion picture given in their figure 11, 
interpreted by a schematical illustration in their figure 10, shows the formation of the 
ring pair and the immediate reversal of the inner ring in the second stage of free vortex 
motion. The orifice radius ratio for their experiment, the impulse imparted to the fluid 
by a sudden hit to the end of the piston rod, and the dimensional penetration distance 
za of the inner ring at its reversal point, were not reported. The values of these 
parameters for the single experiment reported by Kambe & Takao (1971) are estimated 
in the Appendix to be 6 = 0.6, Z/2pA = 7500 k 500, and 0.5 < zb/ W < 1 .O. 

As may be seen from the results in table 2, the inner ring reversed its direction in 24 
of the 34 experimental runs. In figure 13 we plot the normalized inner ring penetration 
distance zk/W as a function of the dimensionless impulse 1/2pA for the 19 most 
symmetrical runs satisfying 141 < 5". The distance 2; is taken to be the maximum 
average axial position of the left and right dyed cores. Each data set in this figure 
corresponds to a different radius ratio 6 and is, for lack of more precise data, fitted with 
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FIGURE 13. Normalized penetration distance of the inner vortex ring as a function of non-dimensional 
impulse with 8 as a parameter with symbols as in figure 7. These results exclude all rings having tilt 
angles 9 exceeding 5" at maximum penetration (cf. table 2). The solid lines are least-squares linear 
fits to the each data set and the dashed line is a linear extrapolation for S = 0.595. 
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FIGURE 14. Penetration distance of the inner vortex ring at Z/2pA = 978 obtained from the fitted 
curves in figure 13. The solid curve is the power law fit to (1 -7) given by equation ( 5 . 5 )  in the text, 
while the dashed curve is the unique cubic fit through the origin matching slope and value to equation 
(5.5) at 8 = 0.55. 

a least-squares linear curve fit. The estimated data point for 6 = 0.6 in the experiment 
of Kambe & Takao (1971) should correspond to the trend of data measured here for 
6 = 0.595. Indeed, the dashed line in figure 13 corresponding to an extrapolation of the 
linear fit is seen to fit as well as might be expected with the estimated experimental point 
of Kambe & Takao (1971) determined in the Appendix. In fact, the extrapolation 
cannot follow a straight line, but is expected to approach zL/W = 0 from above 
asymptotically as 1/2,uA --f GO. 
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FIGURE 15. Regime diagram for return of the inner vortex ring: 0, rings that returned; A, rings that 
did not return; 0, ring that went turbulent at the top of its trajectory. The demarcation separating 
rings which returned from those that did not is drawn assuming results to be independent of the 
piston stroke. 

The effect of radius ratio on inner ring penetration distance can be determined at the 
common value I/2,uA = 978 corresponding to the single data point for 6 = 0.867 in 
figure 13 using the curve fits to the remaining four values of 6. The results plotted in 
figure 14 exhibit a faster-than-exponential rise in normalized penetration with radius 
ratio 6. In fact, a very good approximation to the data in the range 0.595 < 6 < 0.867 
is given by the least-squares polynomial fit 

za = 0.156 - w (1 -6)1.99’ (5.5) 

The dashed curve is the cubic fit through the origin matching slope and value to (5.5) 
at 6 = 0.55. The trend of (5.5) is consistent with za/W-+co as 6+ 1 for parallel 
rectilinear vortex rings. 

The experimentally determined boundary separating inner rings that return from 
those that do not in impulse-radius ratio space is given by the solid curve in figure 15, 
valid for 0.595 < S < 0.867. In this figure all circles indicate rings that returned, and 
triangles correspond to rings that did not return. The solid circle is the data point 
corresponding to run 18 for which the inner ring apparently underwent transition to 
turbulence near the top of its trajectory. In presenting this figure we have tacitly 
assumed that the return boundary is independent of piston stroke L. This is not 
expected to be correct since it may be inferred from the studies by Liess & Didden 
(1976) and Didden (1979) that vortex ring motions generated by the same impulse but 
with different piston strokes will have measurably different trajectories. However, the 
data presented here over the limited range of L/2 W exhibit some consistency, and the 
solid line gives the best estimate of the demarcation boundary. The dashed curves 
to lower and higher values of 6 represent expected trends in those directions, viz. 
Z/2,uA+O as 6-t 0, and 1/2,uA+- 00 as 6;. 1. We note that our estimated data point 
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I / 2 p A  z 7500, 6 = 0.6 for the returned inner ring observed by Kambe & Takao 
(1971) is consistent with the results in figure 15. 

6. Comparison with numerical simulation 
In this section we make a comparison between three of our experimental runs with 

numerical simulations of these as presented in $3.  Recall that our simulation does not 
model the formation process of the vortex rings. It assumes they exist at a prescribed 
position in a closed cylindrical container at some initial time t,, with a structure based 
upon the viscous rectilinear vortex solution. In the formation process the outer and 
inner rings tend to expand and contract respectively, in the radial direction, as long as 
the piston is forcing fluid through the annular gap. This process ceases, and can be seen 
to cease, in the plots of the experimental trajectories in figure 8, when the piston is 
brought to rest. Only after that time is it appropriate to make a comparison between 
the present viscous calculations and experiment. 

As we have seen in earlier sections, our experiments yield the time history of the 
vortex-ring trajectories, with the time history of the driving piston itself. What we are 
not able to infer directly is the initial circulation about each vortex ring, and hence the 
Reynolds number Re = y o / v  of the flow. An estimate of the circulation may be made 
as follows. Consider a two-dimensional slit through which fluid is forced, to form a 
rectilinear vortex pair. Suppose that the fluid emerges from the slit IzI < 1 as a slug flow 
with axial velocity w = w,, for IzI < 1 and w = 0 for Iz( > 1, where w,, is a constant. The 
circulation 67 which is shed from one edge of the slit, say z = 1, in a time St is, by 
Stokes’s theorem, 

(6.1) 6~ = JA CdA = -6t c’ w-dz = -dt[owdw, 

from which we infer that dy/dt = twi.  If the time history of the piston which drives 
such a motion is known, then w,(t) can be inferred, and the total circulation shed 
calculated by simple quadrature. Of course, this is a two-dimensional argument, and 
if it is applied to our annular slit aperature does not distinguish between the inner and 
outer vortex rings, which we may expect to differ in strength. Pullin (1979) has argued 
that with all other parameters held fixed, the circulation about a vortex ring may be 
expected to vary as the four-thirds power of its radius. From this argument we may 
infer that the inner ring, of the pair shed from the annular orifice, is weaker than the 
outer. 

Whilst the above arguments give reasonable order of magnitude estimates for the 
circulation about each vortex ring, we have found that they consistently underestimate 
the circulation about the outer ring, and overestimate that about the inner. (By way of 
comparison, we note that Didden (1979) measured circulation strengths for a single 
vortex ring in excess of that given by a simple slug flow model. Extensive discussions 
on this point are given by Didden (1982) and Maxworthy (1977)). As a consequence 
we have proceeded, in the following pragmatic manner, to determine the circulations. 
The circulation about the outer ring yo, and hence the Reynolds number Re, is chosen 
to give the correct timescale when compared with the experiments. By that we mean 
that yo is chosen in such a manner as to ensure that in a given interval of time the outer 
vortex ring propagates the same axial distance as the observed outer ring. The inner 
ring circulation is then chosen to ensure that the calculated maximum penetration 
distance of the inner vortex ring coincides with the observed maximum penetration 
distance. 
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FIGURE 16. A comparison between averaged measurements (0, m) for run 33 and the calculated (-) 
values of (a) vortex ring trajectories, and the time evolution of (b) the axial and (c) the radial positions 
of the inner and outer rings; S = 0.726, Re = 2100, yJy, = -0.70 and to = 0.1. 

In figures 1 6 1 7  we show a comparison between simulation and experiment for runs 
33,5, and 18 corresponding to three of the annular gaps available to us. In these figures 
we have averaged the radial and axial position measurements obtained at opposite 
sides of the vortex rings in an attempt to find the best axisymmetric representation for 
ring core trajectories. Figure 16 (a) presents the measured trajectories for experimental 
conditions Z/2pA = 1012 and 6 = 0.726 for which we have chosen Re = 2100 and 
yi /yo = - 0.70 for numerical calculations started at the dimensionless time to = 0.1. 
The time evolution up to t = 0.4 of the axial and radial position of each vortex for this 
run is presented in figures 16(b) and 16(c), respectively. Figure 17(a) shows the average 
trajectories for 6 = 0.8 with I/2,uA = 3126 and figure 17(b) gives trajectories for the 
narrowest gap 6 = 0.867 at I/2,uA = 1 1  12. We consider the agreement between 
experiment and calculation to be good considering that the magnitudes of the initial 
circulations are not known. 
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FIGURE 17. (a) As in figure 16(a) but for run 5 ;  6 = 0.800, Re = 4431, yJy, = -0.600 and 
to = 0.125. (b) As in figure 16(a) but for run 18; 6 = 0.867, Re = 1336, yJy0 = -0.819 and to = 0.037. 

7. Discussion and conclusion 
A major conclusion of the numerical simulation is the prediction of the existence, at 

least in a quasi-steady sense, of vortex ring pairs. For inviscid flow a calculation based 
upon thin rings, the result of which is equation (3.1), is unequivocal in its prediction 
of such a configuration. For a viscous fluid, in which there is a continuous 
redistribution of vorticity by diffusion, a steady flow is not possible. Nevertheless our 
numerical simulations predict that the concept of a vortex ring pair is a valid one in a 
quasi-steady sense. 

We have conducted experiments on the formation and movement of counter- 
rotating vortex rings generated by fluid displacement through annular orifices over 
the range of radius ratios 0.595 < 6 < 0.867, dimensionless piston displacements 
0.7 < L/2W < 2.7 and dimensionless impulses 550 < 1/2pA < 3150. All vortices were 
laminar on formation in agreement with the laminar-turbulent transition boundary 
measured by Gleezer (1978). Piston velocities deviated marginally from their average 
constant value Do, and the program factor measuring deviations had an average value 
p f  = 1.09. According to the analysis by Saffman (1978), the laminar outer vortex 
ring should have always undergone azimuthal instability of the type observed by 
Krutzsch (1939), Maxworthy (1972) and others, with modal wavenumbers in the range 
2 < N < 7, if the annular orifice Reynolds number Re, = UJd,  -d,)/v may be 
substituted for the circular orifice Reynolds number Re, = Do d,/v used in Saffman’s 
analysis. Visualization experiments for 6 = 0.726 showed that the instability amplitude 
grew slowly to about two viscous core diameters and remained in an approximately 
frozen pattern on the ring during its trajectory to the bottom of the tank. Measurements 
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at the largest radius ratios exhibited more active involvement of the outer ring in its 
interaction with the weaker counter-rotating inner ring during the final stages of vortex 
ring pair breakdown. 

The axisymmetric roll-up of the inner and outer vortex sheets is observed to follow 
common trajectories independent of the orifice Reynolds number, dependent only on 
the orifice radius ratio. This compares favourably with observations by Didden (1979) 
for isolated vortex rings generated through the end of a circular tube. An oscillation 
of the outer (and, perceptibly, sometimes the inner) vortex ring has been observed. 
Nitsche (1992), in an inviscid simulation of Didden’s (1979) experiments carried out to 
large times, found a similar ring diameter oscillation attributed to a tumbling of the 
elliptical vortex core. In both cases the average oscillation period decreases with each 
subsequent oscillation. 

Reversal of the direction of propagation of the inner vortex ring depends primarily 
on 6 and 1/2pA for the restricted range of piston strokes used in the present experiment 
according to the results in figure 15. The demarcation between rings that return and 
those that do not evidently follows a monotone curve increasing from low values of 6 
and I/2pA and tending toward the asymptotic limit 1/2pA + 00 as 6+ 1, corresponding 
to rectilinear vortex pairs. Furthermore, the penetration distances measured in this 
experiment are in qualitatively good agreement with the estimated data point for the 
single experiment reported by Kambe & Takao (1971). 

The comparison of calculated trajectories of the vortex rings in both time and space 
with the measured trajectories, made by judicious choice of the initial circulation 
strengths of the vortex rings at an initial position in their second stage of free vortex 
motion, is considered good. And we remark that in the absence of any sophisticated 
experimental technique to measure the circulation about each ring, the numerical 
simulation itself provides a tool to determine these circulations. Of interest would be 
the calculation of the viscous second stage of vortex trajectories from knowledge of 
their initial positions and circulation strengths at the end of an inviscid vortex sheet 
roll-up calculation such as that given by Nitsche (1992). Indeed, for the Reynolds 
numbers covered in the present investigation, it appears that the motion of vortex ring 
pairs is, for the most part, governed by inviscid dynamics. Hence, a complete inviscid 
calculation of the entire vortex ring pair motion would be equally interesting. 
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Appendix 
The purpose of the appendix is to outline our procedure for estimating the non- 

dimensional parameters 6 and 1/2pA for the generation of a counter-rotating vortex 
ring pair by impulsive displacement of air through an annular orifice in the experiment 
of Kambe & Takao (1971). From their statement that all variously shaped orifices were 
made to have areas equal to that of a circular orifice of diameter 6 cm, and assuming 
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as shown in their figure 7 ( a )  that the mean orifice diameter was equal to the circular 
orifice diameter, one finds 6 = 0.6 for their set-up. The inner ring penetration distance 
zb, cannot be determined precisely, but from the illustration in their figure 10 it is 
readily inferred that 0.5 < za/ W < 1 .O. 

The basic assumption entertained here is that the impulse imparted to the air 
through the annular orifice in the experiments of Kambe & Takao (1971) was 
comparable to the impulse imparted to air through the circular orifice for which 
quantitative information was given. We begin with the asymptotic formula for inviscid 
motion at velocity U of a circular vortex ring of diameter D with uniform vorticity core 
of diameter d possessing circulation r (Lamb 1932) 

U =  L(1n(-J)-3) 8D 1 
2nD 

valid for small core diameters d 4 D. As shown by Glezer (1988), the impulse imparted 
to a vortex ring is given by 

(A 2) 
I T  - 

2pA v 
and use of (A 1) yields 

--- I - 27cUD[ In (8;) - -- i1-l . 
2pA v 

This represents the non-dimensional impulse generated through a circular orifice of 
area A = +n(dJ2. Using Kambe & Takao’s measured values U = 150 cm/s, D M 6 cm, 
and v = 0.15 cm2/s for a vortex ring produced through a circular orifice, (A 3 )  gives 

-- I - 37700 I n  (7) -t]’. 
2PA 

The ratio d / D  is not known, but is expected to fall in the range 0.01 < d / D  < 0.1 for 
typical vortex ring experiments in air. Using (A 4)  one finds I /2pA = 7260, 7430, and 
8610 for respective values d / D  = 0.01, 0.05 and 0.1. As a representative value we take 
I/2,uA = 7500 as the impulse imparted to a circular ring in their experiments. 
According to our premise that the fluid impulse through the annular orifice was 
comparable to the fluid impulse through the circular orifice, our estimates for the non- 
dimensional parameters in the counter-rotating vortex ring experiment of Kambe & 
Takao (1971) are 6 = 0.6 and I/2pA = 7500. 
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